INDIAN SCHOOL MUSCAT
 COMPUTER SCIENCE
 CLASS 11 (2017-18)

REVISION ASSIGNMENT 2
 TOPIC : Programming QUESTIONS (Loops - for, while \& do while)

DATE : 22.01.2018

1 Write a program to find the factorial value of any number entered through the keyboard using do .. while loop
2 Write a program to check given number is prime or not using while loop
3 Write a program to print all perfect numbers between 1 and 1000 use for...loop
4 Write a program to enter the numbers till the user wants and at the end it should display the count of positive, negative and zeros entered. Use while loop
5 Write a program to enter the numbers till the user wants and at the end it should display the maximum and minimum number entered. Use do.. while loop
6 Write a program to print out all Armstrong numbers between 1and 500. If sum of cubes of each digit of the number is equal to the number itself, then the number is called an Armstrong number. For example $153=(1 * 1 * 1)+(5 * 5 * 5)+(3 * 3 * 3)$
7 Write a program to print Fibonacci series of n terms where n is input by user : 01123581324upto n terms
8 Write a program to calculate the sum of following series where n is input by user.
$1+1 / 2+1 / 3+1 / 4+1 / 5+$ \qquad $1 / n$
9 Write a program to find product of two non-negative numbers x and y (Constraint: do not use the multiplication operator)
10 Write a program to print the following using nested loop:

1. $* * * * * * * * * * *$	2. 1	3.		1		
**********	22		1	2	1	
***********	333		12	3	2	1
**********	4444	1	23	4	3	2

4. a
5. \&
b a
c ba
d c b a
\& \& \&
edeba
$\boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&}$
$\boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&} \boldsymbol{\&}$
11 Write a program to compute to display the sum of the following series :
$x-x^{3} / 3!+x^{5} / 5!-x^{7} / 7!+x^{9} / 9!\ldots \ldots$. upto n terms
